题目内容
【题目】已知,如图在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为( )
A.10°B.20°C.30°D.35°
【答案】B
【解析】
先根据平行线的性质求出∠AOB的度数,由直角三角形的性质得出∠BOC的度数,再根据点A关于直线OB的对称点D恰好在BC上得出OB是线段AD的垂直平分线,故可得出∠BOD的度数,进而得出∠DOC的度数,由点E与点O关于直线BC对称可知BC是OE的垂直平分线,故可得出∠DOC=∠OED.
解:连接OD,
∵BC⊥x轴于点C,∠OBC=35°,
∴∠AOB=∠OBC=35°,∠BOC=90°-35°=55°.
∵点A关于直线OB的对称点D恰好在BC上,
∴OB是线段AD的垂直平分线,
∴∠BOD=∠AOB=35°,
∴∠DOC=∠BOC-∠BOD=55°-35°=20°.
∵点E与点O关于直线BC对称,
∴BC是OE的垂直平分线,
∴∠DOC=∠OED=20°.
故选:B.
练习册系列答案
相关题目