题目内容
【题目】将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.
(Ⅰ)如图①,在OA上取一点E,将△EOC沿EC折叠,使点O落在AB边上的D点,求E点的坐标;
(Ⅱ)如图②,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥OA交E′F于T点,交OC于G点,设T的坐标为(x,y),求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若OG=2 ,求△D′TF的面积.(直接写出结果即可)
【答案】解:(Ⅰ)∵将△EOC沿EC折叠,使O点落在AB边上的D点,
∴DC=OC=10.
在Rt△BCD中,∵∠B=90°,BC=OA=6,DC=10,
∴BD= =8.
在Rt△AED中,∵∠DAE=90°,AD=2,DE=OE,AE=6﹣OE,
∴DE2=AD2+AE2,即OE2=22+(6﹣OE)2,
解得 OE= ,
∴E点的坐标为(0, );
(Ⅱ)∵将△E′OF沿E′F折叠,使O点落在AB边上D′点,
∴∠D′E′F=∠OE′F,D′E′=OE′,
∵D′G∥AO,
∴∠OE′F=∠D′TE′,
∴∠D′E′F=∠D′TE′,
∴D′T=D′E′=OE′,
∴TG=AE′;
∵T(x,y),
∴AD′=x,TG=AE′=y,D′T=D′E′=OE′=6﹣y.
在Rt△AD′E′中,∵∠D′AE′=90°,
∴AD′2+AE′2=D′E′2,即x2+y2=(6﹣y)2,
整理,得y=﹣ x2+3;
由(1)可得AD′=OG=2时,x最小,从而x≥2,
当E′F恰好平分∠OAB时,AD′最大即x最大,
此时G点与F点重合,四边形AOFD′为正方形,即x最大为6,从而x≤6,
故变量x的取值范围是2≤x≤6.
(Ⅲ)∵T的坐标为(x,y),y=﹣ x2+3,OG=2 ,
∴GT=y=﹣ ×12+3=2,AD'=OG=2 ,
∴DT=6﹣2=4,
作FM⊥AB于M,则FM=BC=6,∠FMD'=90°=∠A,
∴∠1+∠2=90°,
由折叠的性质得:∠ED'F=∠AOC=90°,
∴∠1+∠3=90°,
∴∠2=∠3,
∴△D'MF∽△EAD',
∴ = ,即 = = ,
设E'O=ED'=x,则AE'=6﹣x,
在Rt△AD'E'中,由勾股定理得:(2 )2+(6﹣x)2=x2,
解得:x=4,
∴OF=D'F=4 ,
∴GF=OF﹣OG=2 ,
∴△D′TF的面积= D'TGF= ×4×2 =4 .
【解析】(1)利用折叠性质和勾股定理,构建方程,即可求出E坐标;(2)利用折叠的性质、勾股定理构建方程,变形为函数解析式形式即可;(3)由折叠可得相似三角形,对应边成比例可求出E'O,进一步求出面积.
【考点精析】根据题目的已知条件,利用翻折变换(折叠问题)和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
【题目】二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中x与y的部分对应值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②当x>1时,y的值随x值的增大而减小;
③x=3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
上述结论中正确的个数是( )
A.4
B.3
C.2
D.1