题目内容
【题目】如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2020的坐标为_____.
【答案】(505,505)
【解析】
根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,点P2020在第一象限,且横、纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.
解:分析各点坐标可发现,下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,
∵,
∴点P2020在第一象限,
又∵第一象限的点P4(1,1),点P8(2,2),点P12(3,3),
可知,点P2020(505,505),
故答案为:(505,505).
练习册系列答案
相关题目