题目内容

【题目】如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为(
A.
B.3
C.2
D.1

【答案】D
【解析】解:∵△A′DE△ADE翻折而成, ∴AE=A′E,
∵A′为CE的中点,
∴AE=A′E= CE,
∴AE= AC, =
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∴△ADE∽△ABC,
= = =
解得DE=1.
故选D.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网