题目内容
【题目】如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1: (即tan∠DEM=1:
),且D,M,E,C,N,B,A在同一平面内,E,C,N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:
≈1.73,
≈1.41)
【答案】解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,
∵坡面DE=20米,山坡的坡度i=1: ,
∴EF=10米,DF=10 米,
∵DH=DF+EC+CN=(10 +30)米,∠ADH=30°,
∴AH= ×DH=(10+10
)米,
∴AN=AH+EF=(20+10 )米,
∵∠BCN=45°,
∴CN=BN=20米,
∴AB=AN﹣BN=10 ≈17米,
答:条幅的长度是17米.
【解析】此题目考查了解直角三角形的应用.求出AN、BN是关键.过点D作DH⊥AN于H,过点E作FE⊥于DH于F,根据坡度和DE先求出EF和DF,在Rt△ADH中求得AH的值,从而得出AN的值,在Rt△BCN中求出BN的值,再由AB=AN-BN可得.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)),还要掌握关于坡度坡角问题(坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA)的相关知识才是答题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目