题目内容

【题目】如图,⊙P的圆心为P(﹣2,1),半径为2,直线MN过点M(2,3),N(4,1).

(1)请你在图中作出⊙P关于y轴对称的⊙P′(不要求写作法);
(2)请判断(1)中⊙P′与直线MN的位置关系,并说明理由.

【答案】
(1)解:如图所示:⊙P′即为所求;


(2)解:直线MN与⊙P′相交,

理由:过点P′作P′B⊥MN于点B,

∵M(2,3),N(4,1),P′(2,1),

∴P′M=P′N=2,

∴△MP′N是等腰直角三角形,

∴P′B=1,

∵⊙P′的半径为2,

∴直线MN与⊙P′相交.


【解析】(1)结合圆的半径利用P点关于y轴对称得出P′的坐标,进而得出答案;(2)根据M,N,P′的坐标得出P′到直线MN的距离,进而得出答案.
【考点精析】本题主要考查了直线与圆的三种位置关系的相关知识点,需要掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网