题目内容

如图,在直角坐标系中,射线OA与x轴正半轴重合,以O为旋转中心,将OA逆时针旋转:OA?OA1?OA2…?OAn…,旋转角∠AOA1=2°,A1OA2=4°,∠A2OA3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A8OA9=2°,∠A9OA10=4°,…周而复始.则当OAn与y轴正半轴重合时,n的最小值为(  )(提示:2+22+23+24+25+26+27+28=510)
A.16B.24C.27D.32

若经过旋转OAn与y轴正半轴重合,那么射线OA旋转的角度为:360°•k+90°,(k为正整数)
因此旋转的角度必为10°的倍数;
由题意知:2+22+23+24=30,25+26+27+28=480;
即n的值必为4的倍数,显然C选项不符合题意;
A、当n=16时,旋转的角度为:510°×(16÷8)=1020°,
即360°•k+90°=1020°,所求得的k值不是正整数,故A选项不符合题意;
B、当n=24时,旋转的角度为:510°×(24÷8)=1530°,
即360°•k+90°=1530°,解得k=4,故B选项符合题意;
D、显然32>24,已经证得B选项符合题意,那么D选项一定不符合题意;
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网