题目内容
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心______点,按顺时针方向旋转______度得到;
(3)若BC=8,则四边形AECF的面积为______.(直接写结果)
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心______点,按顺时针方向旋转______度得到;
(3)若BC=8,则四边形AECF的面积为______.(直接写结果)
(1)△AEF是等腰直角三角形,
理由是:∵四边形ABCD是正方形,F是BC延长线上一点,
∴AB=AD,∠DAB=∠ABF=∠D=90°,
在△ADE和△ABF中,
,
∴△ADE≌△ABF(SAS)
∴AE=AF,∠DAE=∠FAB,
∵∠DAB=∠DAE+∠BAE=90°,
∴∠FAE=∠DAB=90°,
即△AEF是等腰直角三角形.
(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,
故答案为:A,90.
(3)∵△ADE≌△ABF,
∴SADE=S△ABF,
∴四边形AECF的面积S=S四边形ABCE+S△ABF
=S四边形ABCE+S△ADE
=S正方形ABCD
=8×8
=64,
故答案为:64.
理由是:∵四边形ABCD是正方形,F是BC延长线上一点,
∴AB=AD,∠DAB=∠ABF=∠D=90°,
在△ADE和△ABF中,
|
∴△ADE≌△ABF(SAS)
∴AE=AF,∠DAE=∠FAB,
∵∠DAB=∠DAE+∠BAE=90°,
∴∠FAE=∠DAB=90°,
即△AEF是等腰直角三角形.
(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,
故答案为:A,90.
(3)∵△ADE≌△ABF,
∴SADE=S△ABF,
∴四边形AECF的面积S=S四边形ABCE+S△ABF
=S四边形ABCE+S△ADE
=S正方形ABCD
=8×8
=64,
故答案为:64.
练习册系列答案
相关题目