题目内容
【题目】如图,一段抛物线:(0≤x≤2)记为C1,它与x轴交于两点O、A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C7,若点P(13,m)在第7段抛物线C7上,则m=_____.
【答案】1
【解析】
将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(13,m)为抛物线C7的顶点,从而得到结果.
解:∵y=-x(x-2)(0≤x≤2),
∴配方可得y=-(x-1)2+1(0≤x≤2),
∴顶点坐标为(1,1),
∴A1坐标为(2,0)
∵C2由C1旋转得到,
∴OA1=A1A2,即C2顶点坐标为(3,-1),A2(4,0);
照此类推可得,C3顶点坐标为(5,1),A3(6,0);
C4顶点坐标为(7,-1),A4(8,0);
C5顶点坐标为(9,1),A5(10,0);
C6顶点坐标为(11,-1),A6(12,0);
C7顶点坐标为(13,1).
∴m=1
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】抛物线上部分点的横坐标
,纵坐标
的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
小聪观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0); ②函数的最大值为6;③抛物线的对称轴是
;④在对称轴左侧,y随x增大而增大.其中正确有( )
A. ①② B. ①③ C. ①②③ D. ①③④