题目内容
【题目】如图,在Rt△ABC中,∠C=90°.点O是AB的中点,边AC=6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CD与CE的长度之和为_____.
【答案】6.
【解析】
连接OC,证明△OCD≌△OBE,根据全等三角形的性质得到CD=BE即可解决问题;
连接OC.
∵AC=BC,AO=BO,∠ACB=90°,
∴∠ACO=∠BCO=∠ACB=45°,OC⊥AB,∠A=∠B=45°,
∴OC=OB,
∵∠BOD+∠EOD+∠AOE=180°,∠EOD=90°,
∴∠BOD+∠AOE=90°,
又∵∠COE+∠AOE=90°,
∴∠BOD=∠COE,
在△OCE和△OBD中,
,
∴△OCE≌△OBD(ASA),
∴CE=BD,
∴CE+CD=BD+CD=BC═AC=6.
故答案为:6.
点睛】本题考查旋转变换、等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
练习册系列答案
相关题目
【题目】九年级(3)班数学兴趣小组经过市场调查,整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天) | 1 | 30 | 60 | 90 |
每天的销 售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w与x之间的函数表达式;
(2)销售该商品在第几天时,当天获得的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.