题目内容
【题目】如图,△ABC为等边三角形,O为BC的中点,作⊙O与AC相切于点D.
(1)求证:AB与⊙O相切;
(2)延长AC到E,使得CE=AC,连接BE交⊙O与点F、M,若AB=4,求FM的长.
【答案】(1)见解析;(2)2
【解析】
(1)连接OD,作OG⊥AB于G,由等边三角形的性质得出∠OCD=∠OBG=∠ABC=60°,由切线的性质得出∠ODC=90°=∠OGB,证明△OBG≌△OCD得出OG=OD,即可得出结论;
(2)连接OA、OM,作OH⊥FM于H,由垂径定理得出FH=MH,证明四边形OHBG是矩形,得出OH=BG,由直角三角形的性质得出OH=BG=OB=1,OG=BG=,在Rt△OMH中,由勾股定理得出MH==,即可得出结果.
(1)证明:连接OD,作OG⊥AB于G,如图1所示:
则∠OGB=90°,
∵△ABC为等边三角形,
∴∠OCD=∠OBG=∠ABC=60°,
∵O为BC的中点,
∴OB=OC,
∵⊙O与AC相切于点D,
∴AC⊥OD,
∴∠ODC=90°=∠OGB,
在△OBG和△OCD中,
,
∴△OBG≌△OCD(AAS),
∴OG=OD,
∴AB与⊙O相切;
(2)解:连接OA、OM,作OH⊥FM于H,如图2所示:
则∠OHB=90°,FH=MH,
∵CE=AC,AC=BC,
∴CE=BC,
∴∠CBE=∠CEB=∠ACB=30°,
∴∠ABE=∠ABC+∠CBE=90°,
∵∠OGB=90°,
∴四边形OHBG是矩形,
∴OH=BG,
∵△ABC是等边三角形,O为BC的中点,
∴OB=BC=AB=2,
∵∠BOG=90°﹣60°=30°,
∴OH=BG=OB=1,OG=BG=,
在Rt△OMH中,OM=OG=,OH=1,
∴MH==,
∴FM=2MH=2.
练习册系列答案
相关题目