题目内容

【题目】如图,在平面直角坐标系中,将一块腰长为 的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.

(1)点A的坐标为 , 点B的坐标为
(2)抛物线的解析式为
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

【答案】
(1)(0,2);(﹣3,1)
(2)y= x2+ x﹣2
(3)

解:由(2)中抛物线的解析式可知,抛物线的顶点D(﹣ ,﹣ ),

设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:

解得

∴BD的关系式为y=﹣ x﹣

设直线BD和x 轴交点为E,则点E(﹣ ,0),CE=

∴SDBC= × ×(1+ )=


(4)

解:假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:

①若以点C为直角顶点;

则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1

过点P1作P1M⊥x轴,

∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,

∴△MP1C≌△FBC.

∴CM=CF=2,P1M=BF=1,

∴P1(1,﹣1);

②若以点A为直角顶点;

i)则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2

过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,

∴NP2=OA=2,AN=OC=1,

∴P2(2,1),

ii)若以点P为直角顶点.

过P3作P3G⊥y轴于G,

同理,△AGP3≌△CAO,

∴GP3=OA=2,AG=OC=1,

∴P3为(﹣2,3).

经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y= x2+ x﹣2上,点P3(﹣2,3)不在抛物线上.

故点P的坐标为P1(1,﹣1)与P2(2,1).


【解析】解:(1)∵C(﹣1,0),AC=
∴OA= =2,
∴A(0,2);
过点B作BF⊥x轴,垂足为F,
∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,
在△AOC与△CFB中,

∴△AOC≌△CFB,
∴CF=OA=2,BF=OC=1,
∴OF=3,
∴B的坐标为(﹣3,1),
故答案为:(0,2),(﹣3,1);
·(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:
1=9a﹣3a﹣2,
解得a=
∴抛物线解析式为:y= x2+ x﹣2.
故答案为:y= x2+ x﹣2;
(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标;(2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;(3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据SDBC=SCEB+SCED进行计算即可;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;则延长BC至点P1 , 使得P1C=BC,得到等腰直角三角形△ACP1 , 过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点P1点的坐标;
②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2 , 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可.
③以点P为直角顶点,求出点P的坐标,再判断点P不在抛物线上.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网