题目内容

【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点

(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;
(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)
(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F

求证:①E、F是线段BD的勾股分割点;
②△AMN的面积是△AEF面积的两倍.

【答案】
(1)

解:解:(1)①当MN为最大线段时,

∵点M,N是线段AB的勾股分割点,

∴BM= = =

②当BN为最大线段时,

∵点M,N是线段AB的勾股分割点,

∴BN= = =5,

综上,BN= 或5;


(2)

解:作法:①在AB上截取CE=CA;

②作AE的垂直平分线,并截取CF=CA;

③连接BF,并作BF的垂直平分线,交AB于D;

点D即为所求;如图2所示.


(3)

解:①如图3中,将△ADF绕点A顺时针旋转90°得到△ABH,连接HE.

∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAE,

∴∠EAH=∠EAF=45°,

∵EA=EA,AH=AD,

∴△EAH≌△EAF,

∴EF=HE,

∵∠ABH=∠ADF=45°=∠ABD,

∴∠HBE=90°,

在Rt△BHE中,HE2=BH2+BE2

∵BH=DF,EF=HE,

∵EF2=BE2+DF2

∴E、F是线段BD的勾股分割点.

②证明:如图4中,连接FM,EN.

∵四边形ABCD是正方形,

∴∠ADC=90°,∠BDC=∠ADB=45°,

∵∠MAN=45°,

∴∠EAN=∠EDN,∵∠AFE=∠FDN,

∴△AFE∽△DFN,

∴∠AEF=∠DNF, =

= ,∵∠AFD=∠EFN,

∴△AFD∽△EFN,

∴∠DAF=∠FEN,

∵∠DAF+∠DNF=90°,

∴∠AEF+∠FEN=90°,

∴∠AEN=90°

∴△AEN是等腰直角三角形,

同理△AFM是等腰直角三角形;

∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,

∴AM= AF,AN= AE,

∵SAMN= AMANsin45°,

SAEF= AEAFsin45°,

= =2,

∴SAMN=2SAEF


【解析】(1)①当MN为最大线段时,由勾股定理求出BN;②当BN为最大线段时,由勾股定理求出BN即可;(2)①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE,只要证明△EAH≌△EAF,推出EF=HE,再证明∠HBE=90°即可.②如图4中,连接FM,EN.首先证明△AEN是等腰直角三角形,△AFM是等腰直角三角形,推出AM= AF,AN= AE,由SAMN= AMANsin45°,SAEF= AEAFsin45°,即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网