题目内容
【题目】如图,在中,,是的中点,是的中点,过点作交的延长线于点.
(1)求证:四边形是菱形;
(2)若,,求菱形的面积.
【答案】(1)证明见解析;(2)96.
【解析】
(1)先证明△AEF≌△DEB,可得AF=DB=DC,进而证明四边形ADCF是平行四边形,然后由直角三角形斜边中线的性质得AD=CD,即可证明四边形ADCF是菱形;
(2)求出菱形ADCF的面积=直角三角形ABC的面积,然后解答即可.
(1)证明:∵E是AD的中点,
∴AE=DE
∵AF∥BC,
∴∠AFE=∠DBE,
∵在△AEF和△DEB中,∠AFE=∠DBE,∠AEF=∠DEB,AE=DE,
∴△AEF≌△DEB(AAS),
∴AF=DB=DC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=CD=BC,
∴平行四边形ADCF是菱形;
(2)解:设AF到CD的距离为h,
∵AF∥BC,AF=BD=CD,∠BAC=90°,
∴S菱形ADCF=CD·h=BC·h=S△ABC=AB·AC=×12×16=96.
【题目】两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:
发言次数n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得样本容量为 ,并补全直方图;
(2)已知A组发表提议的代表中恰有1位女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价(元/) | 20 | 30 | 40 |
日销售量() | 80 | 60 | 40 |
(1)求关于的函数解析式(不要求写出自变量的取值范围);
(2)为多少时,当天的销售利润 (元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了元/,物价部门规定该商品售价不得超过36元/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.