题目内容
如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,
求证:BD=OB.
求证:BD=OB.
证明:连接OC,
∵CD与圆0相切,
∴OC⊥CD,
∴∠OCD=90°,
∵OA=OC,
∴∠A=∠OCA=30°,
∵∠COD为△AOC的外角,
∴∠COD=60°,
∴∠D=30°,
∴OC=
OD,
∴OB=
OD,即B为OD的中点,
则OB=BD.
∵CD与圆0相切,
∴OC⊥CD,
∴∠OCD=90°,
∵OA=OC,
∴∠A=∠OCA=30°,
∵∠COD为△AOC的外角,
∴∠COD=60°,
∴∠D=30°,
∴OC=
1 |
2 |
∴OB=
1 |
2 |
则OB=BD.
练习册系列答案
相关题目