题目内容
【题目】如图,已知双曲线(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为_____.
【答案】9
【解析】
要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D为三角形OAB斜边OA的中点,且点A的坐标(﹣6,4),可得点D的坐标为(﹣3,2),代入双曲线可得k,又AB⊥OB,所以C点的横坐标为﹣6,代入解析式可得纵坐标,继而可求得面积.
解:∵点D为△OAB斜边OA的中点,且点A的坐标(﹣6,4),
∴点D的坐标为(﹣3,2),
把(﹣3,2)代入双曲线
可得k=﹣6,
即双曲线解析式为
∵AB⊥OB,且点A的坐标(﹣6,4),
∴C点的横坐标为﹣6,代入解析式
y=1,
即点C坐标为(﹣6,1),
∴AC=3,
又∵OB=6,
∴S△AOC=×AC×OB=9.
故答案为:9.
练习册系列答案
相关题目