题目内容

如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=
1
2x
(x>0)
上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.
(1)当点P的坐标为(
3
4
2
3
)时,求E、F两点的坐标及△EOF的面积;
(2)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(3)求BE•AF的值.
(1)∵点P的坐标为(
3
4
2
3

而PM⊥x轴,PN⊥y轴,
∴E点的横坐标为
3
4
,F点的纵坐标为
2
3

∵点E、F在直线y=-x+1上,
当x=
3
4
时,y=-
3
4
+1=
1
4

当y=
2
3
时,
2
3
=-x+1,则x=
1
3

∴E、F两点的坐标分别为(
3
4
1
4
)、(
1
3
2
3
);
∵A点坐标为(1,0),B点坐标为(0,1),
∴S△OAB=
1
2
×1×1=
1
2

∴S△EOF=S△OAB-S△OBF-S△OAE
=
1
2
-
1
2
×1×
1
3
-
1
2
×1×
1
4
=
5
24


(2)∵点P的坐标为(a,b),0<a≤1,且b=
1
2a

而PM⊥x轴,PN⊥y轴,
∴E点的横坐标为a,F点的纵坐标为b,
∵点E、F在直线y=-x+1上,
∴当x=a时,y=-a+1,
当y=b时,b=-x+1,则x=-b+1,
∴E、F两点的坐标分别为(a,-a+1)、(-b+1,b);
S△EOF=S△OAB-S△OBF-S△OAE
=
1
2
-
1
2
×1×(-b+1)-
1
2
×1×(-a+1)=
1
2
(a+b-1);

(3)作EG⊥y轴于G,FH⊥x轴于H点,如图,
∵OA=OB=1,
∴△OAB为等腰直角三角形,
∴△GEB、△FHA都为等腰直角三角形,
∴BE=
2
GE,AF=
2
FH,
而E、F两点的坐标分别为(a,-a+1)、(-b+1,b),ab=1,
∴BE=
2
a,AF=
2
b,
∴BE•AF=2ab=2×
1
2
=1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网