题目内容
【题目】(1)如图,已知线段和点O,利用直尺和圆规作,使点O是的内心(不写作法,保留作图痕迹);
(2)在所画的中,若,则的内切圆半径是______.
【答案】(1)作法:如图所示,见解析;(2)2.
【解析】
(1)内心是角平分线的交点,根据AO和BO分别是∠CAB和∠CBA的平分线,作图即可;
(2)连接OC,设内切圆的半径为r,利用三角形的面积公式,即可求出答案.
解:(1)作法:如图所示:
①作射线、;
②以点A为圆心,任意长为半径画弧分别交线段,射线于点D,E;
③以点E为圆心,长为半径画弧,交上一步所画的弧于点F,同理作出点M;
④作射线,相交于点C,即所求.
(2)如图,连接OC,
∵,
由勾股定理,得:,
∴;
∵,
∴,
∴,
∴,
∴的内切圆半径是2;
故答案为:2;
练习册系列答案
相关题目