题目内容
【题目】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1B2,△A2B2B3,△A3B3B4,…均为等边三角形.若OB1=1,则△A8B8B9的边长为( )
A.64B.128C.132D.256
【答案】B
【解析】
根据等腰三角形的性质以及平行线的性质得出,以及,得出,,进而得出答案.
解:∵△A1B1B2是等边三角形,
∴∠A1B1B2=∠A1B2O=60°,A1B1=A1B2,
∵∠O=30°,
∴∠A2A1B2=∠O+∠A1B2O=90°,
∵∠A1B1B2=∠O+∠OA1B1,
∴∠O=∠OA1B1=30°,
∴OB1=A1B1=A1B2=1,
在Rt△A2A1B2中,∵∠A1A2B2=30°
∴A2B2=2A1B2=2,
同法可得A3B3=22,A4B4=23,…,AnBn=2n﹣1,
∴△A8B8B9的边长=27=128,
故选:B.
练习册系列答案
相关题目
【题目】九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号 | 一 | 二 | 三 | 四 | 五 |
人数 | 15 | 20 | 10 |
已知前面两个小组的人数之比是.
解答下列问题:
(1) .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)