题目内容
【题目】如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB与CE交于F,ED与AB、BC分别交于M、H.
(1)求证:CF=CH;
(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=时,试判断四边形ACDM是什么四边形?并证明你的结论.
【答案】(1)见解析;(2)菱形,理由见解析
【解析】
(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;
(2)当旋转角∠BCD=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形.
(1)∵AC=CE=CB=CD,∠ACB=∠ECD=90°,
∴∠A=∠B=∠D=∠E=45°,
在△BCF和△ECH中,
∵,
∴△BCF≌△ECH(ASA),
∴CF=CH;
(2)∠BCE=45°时,四边形ACDM是菱形,
理由如下:
∵∠ACB=∠DCE=90°,∠BCE=45°,
∴∠ACE=∠DCB=45°.
∵∠E=45°,
∴∠ACE =∠E,
∴AC∥DE,
∴∠AMH=180°-∠A=135°,
又∵∠A=∠D=45°,
∴∠AMH+∠D=135°+45°=180,
∴AM∥CD,
∴四边形ACDM是平行四边形;
∵AC=CD,
∴四边形ACDM是菱形.
练习册系列答案
相关题目