题目内容
【题目】如图,分别以的直角边AC及斜边AB向外作等边,等边.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF.试说明AC=EF;
【答案】证明见解析.
【解析】
首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF
证明:∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴∠AEF=30°
∴AE=2AF,且AB=2AF,
∴AF=CB,
而∠ACB=∠AFE=90°,
在Rt△AFE和Rt△BCA中,
∴△AFE≌△BCA(HL),
∴AC=EF.
练习册系列答案
相关题目
【题目】在3月22日的“世界水资源保护日”当天,我县某校开展“节约用水,从你我做起”的宣传活动,小明利用课余时间对他所居住小区100户居民2月份的用水量进行调查,情况如下表
用水量(m3) | 9 | 10 | 11 | 12 |
户数(户) | 20 | 40 | 30 | 10 |
请根据表中的数据,求这100户居民2月份用水量的众数、中位数和平均数.
【题目】小聪在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:
x | … | -5 | -4 | -3 | -2 | -1 | … |
y | … | -7.5 | -2.5 | 0.5 | 1.5 | 0.5 | … |
根据表格提供的信息,下列说法错误的是( ).
A. 该抛物线的对称轴是直线x=-2
B. b2-4ac>0
C. 该抛物线与y轴的交点坐标为(0,-3.5)
D. 若(0.5,y1)是该抛物线上一点.则y1<-2.5