题目内容
【题目】在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.
(1)如图1,求证:弧AC等于弧CD;
(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;
(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.
【答案】(1)详见解析;(2)详见解析;(3)4.
【解析】
(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;
(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;
(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.
(1)证明:连接BC、CD,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵∠CAB+∠CAD=90°,
∴∠CBA=∠CAD,
又∵∠CDA=∠CBA,
∴∠CDA=∠CAD,
∴AC=CD,
∴ ;
(2)过点C作CG⊥AD于点G,则∠CGA=90°,
由(1)知AC=CD,
∴CG垂直平分AD,
∴AD=2AG,
∵AF=CF,
∴∠CAD=∠ACE,
∵∠CAD+∠CAB=90°,
∴∠ACE+∠CAB=90°,
∴∠AEC=90°=∠CGA,
∵AC=CA,
∴△ACG≌△CAE(AAS),
∴AG=CE,
∴AD=2CE;
(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,
∴∠OHB=90°=∠CEO,
∵OA=OB,
∴OH是△ABD的中位线,
∴AD=2OH,
由(2)知AD=2CE,
∴OH=CE,
∵OC=OB,
∴Rt△OEC≌Rt△BHO(HL),
∴OE=BH=6,
∴OC=OA=AE+OE=4+6=10,
∴在Rt△OEC中,CE2=OC2﹣OE2=82,
∴在Rt△AEC中,AC= =4.