题目内容
【题目】在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC的中点,AE∥BC交BD的延长线于点E,其中∠FBC=2∠FBD.
(1)求∠EDC的度数.
(2)求证:BF=AE.
【答案】(1)∠EDC=75°;(2)见解析.
【解析】
(1)由角平分线的性质可得∠ABD=∠DBC=45°,可求∠FBD=15°,∠FBC=30°,由直角三角形的性质可得∠C=∠FBC=30°,即可求解;
(2)由直角三角形的性质可得BF=AB,由平行线的性质和等腰三角形的性质可得AB=AE,可证BF=AE.
(1)∵∠ABC=90°,BD为∠ABC的角平分线,
∴∠ABD=∠DBC=45°,
∵∠FBC=2∠FBD.
∴∠FBD=15°,∠FBC=30°,
∵∠ABC=90°,点F是AC中点,
∴AF=BF=CF,
∴∠C=∠FBC=30°,
∴∠EDC=∠C+∠DBC=75°;
(2)∵∠C=30°,∠ABC=90°,
∴AC=2AB,
∴AB=AF=BF,
∵AE∥BC,
∴∠E=∠DBC=45°=∠ABD,
∴AB=AE,
∴AE=BF.
【题目】定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A | B | C | |
笔试 | 85 | 95 | 90 |
口试 |
| 80 | 85 |
(1)请将表和图中的空缺部分补充完整;
(2)图中B同学对应的扇形圆心角为 度;
(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;
(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.