题目内容
【题目】如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.
(1)若∠CAE=∠B+30°,求∠B的大小;
(2)若AC=3,AB=5,求△AEB的周长.
【答案】(1)∠B=20°;(2)△AEB的周长=11.25.
【解析】
(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠B=∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠CEA=∠B+∠BAE=2∠B,然后在△ACE中,根据直角三角形两锐角互余列出方程求解即可;
(2)利用勾股定理列式求出BC=4,设AE=BE=x,表示出CE=4﹣x,然后在Rt△ACE中,利用勾股定理列式求出x,再根据三角形的周长的定义列式计算即可得解.
解:(1)∵DE垂直平分AB,
∴AE=BE,
∴∠B=∠BAE,
∴∠CEA=∠B+∠BAE=2∠B,
在△ACE中,∠CAE+∠CEA=∠B+30°+2∠B=90°,
解得∠B=20°;
(2)由勾股定理得,=4,
设AE=BE=x,则CE=4﹣x,
在Rt△ACE中,AC2+CE2=AE2,
即32+(4﹣x)2=x2,
解得x=,
∴△AEB的周长=×2+5=11.25.
练习册系列答案
相关题目