题目内容
【题目】如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是 .
【答案】3
【解析】解:作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q.
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴DQ⊥AE,∵DE=AD,
∴QE=QA,
∴QA+QP=QE+QP=EP,
∴此时QA+QP最短(垂线段最短),
∵∠CAB=30°,
∴∠DAC=60°,
在RT△APE中,∵∠APE=90°,AE=2AD=6,
∴EP=AEsin60°=6× =3 .
故答案为3 .
作点A关于直线CD的对称点E,作EP⊥AC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题.
练习册系列答案
相关题目