题目内容

【题目】某数学兴趣小组想测量河流的宽度AB,河流两岸AC,BD互相平行,河流对岸有两棵树A和C,且A、C之间的距离是60m,他们在D处测得∠BDC=36°,前行140米后测得∠BPA=45°,请根据这些数据求出河流的宽度.
(结果精确到0.1米,参考数据:tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)

【答案】解:作CH⊥BD,则BH=AC=60米,设AB为x米,则CH为x米,
在Rt△ABP中,tan45°=1,
∴BP=x,
∴HD=BP+PD﹣BH=x+140﹣60=(x+80)米,
在Rt△CHD中,
∵tan∠CDH=
∴x+80=
∴x=(x+80)tan36°,
∴x≈216.3(米),
答:河流的宽度约为216.3米.

【解析】作CH⊥BD,设AB为x米,则CD为x米,在Rt△ABP中,易求HD,在Rt△CHD中,根据36度角的锐角三角函数可建立方程,解方程求出x的值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网