题目内容

【题目】如图,△ABC的面积是12AB=ACBC=3,边AC的垂直平分线交ACF,交ABE.点DBC的中点,点PEF上的一个动点,则△PCD的周长最小值是( )

A.4B.8C.7D.9.5

【答案】D

【解析】

连接AD,由等腰三角形的性质可得ADBCCD=15,根据三角形的面积公式可求得AD=8,再根据EF是线段AC的垂直平分线,可知点C关于直线EF的对称点为点A,从而可得AD的长为CP+PD的最小值,继而根据三角形周长公式进行求解即可得.

连接AD

∵△ABC中,AB=AC,点DBC边的中点,BC=3

ADBCCD=BC=1.5

∴SABC=BCAD=×3×AD=12

解得AD=8

EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A

AD的长为CP+PD的最小值,

∴△CDP的周长最短=CP+PD+CD=AD+CD=8+1.5=9.5

故选D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网