题目内容
【题目】如图,在菱形中,,,点E,F分别是边,的中点,是上的动点,那么的最小值是_______.
【答案】5
【解析】
设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.
设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,
∴PN=PE,
∵四边形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E为AB的中点,
∴N在AD上,且N为AD的中点,
∵AD∥CB,
∴∠ANP=∠CFP,∠NAP=∠FCP,
∵AD=BC,N为AD中点,F为BC中点,
在△ANP和△CFP中
∵ ,
∴△ANP≌△CFP(ASA),
∴AP=CP,
即P为AC中点,
∵O为AC中点,
∴P、O重合,
即NF过O点,
∵AN∥BF,AN=BF,
∴四边形ANFB是平行四边形,
∴NF=AB,
∵菱形ABCD,
∴AC⊥BD,OA=AC=4,BO=BD=3,
由勾股定理得:AB= =5,
故答案为:5.
练习册系列答案
相关题目