题目内容
【题目】如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①AE为何值时四边形CEDF是矩形?为什么?
②AE为何值时四边形CEDF是菱形?为什么?
【答案】(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.
【解析】
(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;
(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.
(1)证明:∵四边形ABCD是平行四边形
∴AD∥BF,
∴∠DEF=∠CFE,∠EDC=∠FCD,
∵G是CD的中点,
∴GD=GC,
∴△GED≌△GFC,
∴DE=CF,DE∥CF,
∴四边形CEDF是平行四边形,
(2)①当AE=4cm时,四边形CEDF是矩形.
理由:作AP⊥BC于P,
∵四边形CEDF是矩形,
∴∠CED=∠APB=90°,
∴AP=CE,
又∵ABCD是平行四边形,
∴AB=CD=4cm,
则△ABP≌△CDE(HL),
∴BP=DE,
∵AB=4cm,∠B=60°,
∴BP=AB×cos60°=4×=2(cm),
∴BP=DE=2cm,
又∵BC=AD=6cm,
∴AE=AD-DE=6-2=4(cm);.
②当AE=2时,四边形CEDF是菱形.
理由:∵平行四边形CEDF是菱形,
∴DE=CE,
又∵∠CDE=∠B=60°,
∴△CDE是等边三角形,
∵四边形ABCD是平行四边形,
∴AB=CD=4cm,DE=CD=4cm,
∵BC=AD=6cm,
则AE=AD-DE=6-4=2(cm).
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)
【题目】为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.
整理情况 | 频数 | 频率 |
非常好 | 0.21 | |
较好 | 70 | 0.35 |
一般 | m | |
不好 | 36 |
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了 名学生;
(2)m= ;
(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.