题目内容
如图,三角形ABC的面积为1,BD:DC=2:1,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.
连接CP,
设△CPE的面积是x,△CDP的面积是y.
∵BD:DC=2:1,E为AC的中点,
∴△BDP的面积是2y,△APE的面积是x,
∵BD:DC=2:1,CE:AC=2:1,
∴△ABP的面积是4x.
∴4x+x=2y+x+y,
解得y=
x.
又∵4x+x=
,
x=
.
则四边形PDCE的面积为x+y=
.
故答案为:
.
设△CPE的面积是x,△CDP的面积是y.
∵BD:DC=2:1,E为AC的中点,
∴△BDP的面积是2y,△APE的面积是x,
∵BD:DC=2:1,CE:AC=2:1,
∴△ABP的面积是4x.
∴4x+x=2y+x+y,
解得y=
4 |
3 |
又∵4x+x=
1 |
2 |
x=
1 |
10 |
则四边形PDCE的面积为x+y=
7 |
30 |
故答案为:
7 |
30 |
练习册系列答案
相关题目