题目内容

【题目】如图,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);

(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

【答案】(1)作图如下:(2)∠BDC=72°

【解析】解:(1)作图如下:

(2)∵在△ABC中,AB=AC,∠ABC=72°,

∴∠A=180°﹣2∠ABC=180°﹣144°=36°。

∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°。

∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°。

(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:

①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;

②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D。

(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出

∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网