题目内容
【题目】如图,是半的直径,、是半圆的三等分点,若,是直径上的任意一点,则图中阴影部分的面积是________.
【答案】
【解析】
连CD,OC,OD,根据圆周角定理得到∠AOC=∠COD=∠BOD,则∠AOC=∠COD=60°,得到△OCD为等边三角形,则∠OCD=60°,判断CD∥AB,得到S△PCD=S△OCD,则阴影部分的面积=S半圆-S扇形OCD,然后利用圆的面积公式和扇形的面积公式计算即可.
连CD,OC,OD,如图,
∵AB是半⊙O的直径,C、D是半圆的三等分点,
∴∠AOC=∠COD=∠BOD,
∴∠AOC=∠COD=60°,
∴△OCD为等边三角形,
∴∠OCD=60°,
∴CD∥AB,
∴S△PCD=S△OCD,
∴阴影部分的面积=S半圆-S扇形OCD,
=π×12-,
=π.
故答案为:π.
【题目】某年级共有300名学生,为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制)、并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);
b.A课程成绩在70≤x<80这一组的是:
70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
c.A,B两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
A | 75.8 | m | 84.5 |
B | 72.2 | 70 | 83 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是______(填“A”或“B”),理由是________________________________;
(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.