题目内容
【题目】如图,已知,在锐角△ABC中,CE⊥AB于点E,点D在边AC上,联结BD交CE于点F,且EF·FC=FB·DF.
(1)求证:BD⊥AC;
(2)联结AF,求证:AF·BE=BC·EF.
【答案】(1)详见解析;(2)详见解析.
【解析】试题分析:(1)由两边成比例且夹角相等的两个三角形相似,可得△EFB∽△DFC,再由相似三角形对应角相等得∠FEB=∠FDC = 90°,即可得证;
(2)由△EFB∽△DFC得∠ABD =∠ACE,进而△AEC∽△FEB,由相似三角形对应边成比例得,由此△AEF∽△CEB,可得.
试题解析:(1)∵AF·BE=BC·EF ,
∴,
∵ ∠EFB=∠DFC,
∴ △EFB∽△DFC.
∴ ∠FEB=∠FDC.
∵ CE⊥AB,
∴ ∠FEB= 90°.
∴ ∠FDC= 90°.
∴ BD⊥AC.
(2)∵ △EFB∽△DFC,
∴ ∠ABD =∠ACE.
∵ CE⊥AB,
∴ ∠FEB= ∠AEC= 90°.
∴ △AEC∽△FEB.
∴,
∴.
∵ ∠AEC=∠FEB= 90°,
∴ △AEF∽△CEB.
∴,
∴.
练习册系列答案
相关题目