题目内容
【题目】在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x的函数关系式;
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
【答案】(1)甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2;(2)y=﹣2x+40;(3)当x=15时,W最低=11.5
【解析】
(1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;
(2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;
(3)用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.
解:(1)设乙队每天能完成绿化面积为am2,则甲队每天能完成绿化面积为2am2
根据题意得:
解得a=40
经检验,a=40为原方程的解
则甲队每天能完成绿化面积为80m2
答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2
(2)由(1)得80x+40y=1600
整理得: y=﹣2x+40
(3)由已知y+x≤25
∴﹣2x+40+x≤25
解得x≥15
总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10
∵k=0.1>0
∴W随x的增大而增大
∴当x=15时,W最低=1.5+10=11.5
练习册系列答案
相关题目