题目内容
【题目】某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀. 为了解本次大赛的成绩,校团委随机抽取了甲、乙两组学生成绩作为样本进行统计,绘制了如下统计图表:
组别 | 平均数 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.8 | a | 3.76 | 90% | 30% |
乙组 | b | 7.5 | 1.96 | 80% | 20% |
(1)求出表中a,b的值;
(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面的表格判断,小英属于哪个组?
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组. 但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.
【答案】(1)a=6,b=7.2;(2)小英属于甲组;(3)详见解析.
【解析】
(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.
(1)由折线统计图可知,甲组成绩从小到大排列为:3,6, 6,6,6,6,7,9,9,10,∴其中位数a=6,乙组学生成绩的平均数b=(5×2+6×1+7×2+8×3+9×2)=7.2.
(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组.
(3)从平均数和方差两方面阐述即可. ①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.
【题目】为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格(万元/台) |
|
|
处理污水量(吨/月) | 220 | 180 |
(1)求的值;
(2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有哪几种购买方案?每月最多能处理污水多少吨?
【题目】为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节约用水的目的,规定:每户居民每月用水不超过15m3时,按基本价格收费;超过15m3时,不超过的部分仍按基本价格收费,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如表所示:
月份 | 用水量/m3 | 水费/元 |
4 | 16 | 50 |
5 | 20 | 70 |
(1)求该市居民用水的两种收费价格;
(2)若该居民6月份交水费80元,那么该居民这个月水量为m3 .