题目内容
【题目】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )
A.5米
B.8米
C.7米
D.5 米
【答案】B
【解析】解:因为跨度AB=24m,拱所在圆半径为13m, 所以找出圆心O并连接OA,延长CD到O,构成直角三角形,
利用勾股定理和垂径定理求出DO=5,
进而得拱高CD=CO﹣DO=13﹣5=8.故选B.
【考点精析】关于本题考查的勾股定理的概念和垂径定理的推论,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等才能得出正确答案.
练习册系列答案
相关题目