题目内容

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

【答案】D

【解析】

设点MDE的中点,点NFG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.

设点MDE的中点,点NFG的中点,连接MN交半圆于点P,此时PN取最小值.

DE=4,四边形DEFG为矩形,

GF=DE,MN=EF,

MP=FN=DE=2,

NP=MN-MP=EF-MP=1,

PF2+PG2=2PN2+2FN2=2×12+2×22=10.

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网