题目内容
【题目】如图在中,,为边上一点,且,过作,内切于四边形,则的值为( )
A. B. C. D.
【答案】D
【解析】
先由DE∥BC,根据平行线分线段成比例定理得出BC=3DE,根据同一底上的两个角相等的梯形是等腰梯形证明四边形BCED是等腰梯形,则BD=CE,再作等腰梯形BCED的高DF、EG,设DE=a,根据圆外切四边形及等腰梯形的性质得出BD=CE=2a,然后解Rt△BDF,即可求出sinB的值.
解:∵DE∥BC,BD=2AD,
∴,
∴BC=3DE.
∵AB=AC,
∴∠B=∠C,
∵DE∥BC,BC≠DE,
∴四边形BCED是等腰梯形,
∴BD=CE.
作等腰梯形BCED的高DF、EG,则四边形DEGF是矩形,BF=CG.
设DE=a,则BC=3DE=3a,BF=CG==a.
∵⊙O内切于四边形BCED,
BD+CE=DE+BC=a+3a=4a,
∴BD=CE=2a.
在Rt△BDF中,∵∠BFD=90°,
∴DF===a,
∴sinB===.
故选:D.
【题目】红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:
时间(天) | 1 | 3 | 6 | 10 | 36 | … |
日销售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究 这种商品的有关问题.
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.