题目内容

【题目】红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量()与时间()的关系如下表:

时间()

1

3

6

10

36

日销售量()

94

90

84

76

24

未来40天内,前20天每天的价格y1(/)t时间()的函数关系式为:y1=t+25(1t20t为整数);后20天每天的价格y2(/)t时间()的函数关系式为:y2=t+40(21t40t为整数).下面我们来研究 这种商品的有关问题.

(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;

(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?

(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.

【答案】1y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(33≤a4

【解析】

(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;
(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;
(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围

(1)设数m=kt+b,有,解得

∴m=-2t+96,经检验,其他点的坐标均适合以上
析式故所求函数的解析式为m=-2t+96.
(2)设日销售利润为P,

由P=(-2t+96)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且对称轴为t=44,
∴函数P在21≤t≤40上随t的增大而减小,
∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),

答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.
(3)P1=(-2t+96)
=-+(14+2a)t+480-96n,
∴对称轴为t=14+2a,
∵1≤t≤20,
∴14+2a≥20得a≥3时,P1随t的增大而增大,
又∵a<4,
∴3≤a<4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网