题目内容
【题目】如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.
【答案】46°
【解析】
连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.
解:连接OB,OC,
∵直线EF是⊙O的切线,B是切点
∴∠OBF=90°
∵AD∥BC
∴∠DBC=∠ADB=54°
又∵∠DCB=80°
∴∠BDC=180°-∠DBC -∠DCB=46°
∴∠BOC=2∠BDC =92°
又∵OB=OC
∴∠OBC=
∴∠CBF=∠OBF-∠OBC=90-44=46°
故答案为:46°
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目