题目内容
【题目】在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
根据二次函数的图象可知抛物线开口向上,对称轴为x=﹣1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x=﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.
由图象可知:抛物线开口向上,对称轴为直线x=﹣1,过(1,0)点,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;
对称轴为直线x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正确;
由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(﹣3,0),因此方程ax2+bx+c=0的两根分别为﹣3和1;故③是正确的;
由图可得,抛物线有两个交点,所以b2﹣4ac>0,故④正确;
故选C.
练习册系列答案
相关题目