题目内容
【题目】如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点 处测得码头 的船的东北方向,航行40分钟后到达处,这时码头恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头的最近距离.(结果精确的0.1海里,参考数据 )
【答案】船在航行过程中与码头C的最近距离是13.7海里.
【解析】
试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.
试题解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,
由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,
∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,
由勾股定理可知:AD=10
∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10
∵∠DAB=30°,∴CE=AC=5+5≈13.7
答:船在航行过程中与码头C的最近距离是13.7海里
练习册系列答案
相关题目