题目内容
【题目】如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与 y轴正半轴交于点B(0,b),且+|b﹣4|=0.
(1)求△AOB的面积;
(2)如图2,若P为直线AB上一动点,连接OP,且2S△AOP≤S△BOP≤3S△AOP,求P点横坐标xP的取值范围;
(3)如图3,点C在第三象限的直线AB上,连接OC,OE⊥OC于O,连接CE交y 轴于点D,连接AD交OE的延长线于F,则∠OAD、∠ADC、∠CEF、∠AOC之间是否有某种确定的数量关系?试证明你的结论.
【答案】(1)12;(2)﹣4.5≤xP≤﹣4或﹣12≤xP≤﹣9;(3)∠CEF+∠ADC﹣∠OAD﹣∠AOC=90°.
【解析】
(1)利用非负数的性质即可解决问题;
(2)过点P作PH⊥y轴于H,∴PH=|xP|.分三种情形讨论即可①点P在第一象限时,S△BOP<S△AOP,结论不成立;②点P在第二象限时,PH=|xP|=-xP,S△BOP=-2xP,S△AOP=12+2xP,列出不等式即可解决问题.③P在第三象限时,列出不等式即可;
(3)如图,作AM∥OF交CD于M,DN∥OF交OC于N,利用平行线的性质,等式的性质即可解决问题.
(1)∵+|b﹣4|=0,
又∵≥0,|b﹣4|≥0,
∴a=﹣6,b=4,
∴A(﹣6,0),B(0,4)
∴S△AOB=×6×4=12;
(2)如图,过点P作PH⊥y轴于H,∴PH=|xP|.由图形可知,
①点P在第一象限时,S△BOP<S△AOP,结论不成立;
②点P在第二象限时,PH=|xP|=﹣xP,S△BOP=﹣2xP,S△AOP=12+2xP
∴2(12+2xP)≤﹣2xP≤3(12+2xP),
解得﹣4.5≤xP≤﹣4;
③P在第三象限时,2(﹣2xP﹣12)≤﹣2xP≤3(﹣2xP﹣12),
解得﹣12≤xP≤﹣9.
综上,P点横坐标xP的取值范围是﹣4.5≤xP≤﹣4或﹣12≤xP≤﹣9.
(3)如图,作AM∥OF交CD于M,DN∥OF交OC于N,
∴AM∥OF∥DN,
∴∠AMD=∠CEF,∠ADN=∠DAM,∠AMD+∠ADC+∠ADN=180°①,
∠FOC+∠AOC+∠OAD+∠DAM=180°,
又∵∠FOC=90°,
∴∠OAD+∠AOC+∠DAM=90°②,
由①得∠ADN=180°﹣∠AMD﹣∠ADC;由②得∠DAM=90°﹣∠OAD﹣∠AOC,
又∠ADN=∠DAM,
∴180°﹣∠AMD﹣∠ADC=90°﹣∠OAD﹣∠AOC,
又∵∠AMD=∠CEF,
∴∠CEF+∠ADC﹣∠OAD﹣∠AOC=90°.
(或∠CEF+∠ADC=90°+∠OAD+∠AOC类似结论均可)
【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告 | |||
比赛场次 | 胜场 | 负场 | 积分 |
22 | 12 | 10 | 34 |
22 | 14 | 8 | 36 |
22 | 0 | 22 | 22 |
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
(1)从表中可以看出,负一场积______分,胜一场积_______分;
(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.