题目内容
如图,在平面直角坐标系中,点P从原点O出发按图中“→”方向运动,每次运动1个单位长度,得到点P1、P2、P3、P4、P5、P6、…,且△OP1P2、△P2P4P6、△P6P9P12…都是等边三角形,则P1的坐标是______,P420的坐标是______.
∵△OP1P2是等边三角形,
∴∠P1OP2=60°,
1×cos60°=1×
=
,
1×sin60°=1×
=
,
∴点P1的坐标是(
,
);
∵第1个三角形有2个点,
第2个三角形增加4个点,
第3个三角形增加6个点,
…,
依此规律,第n个三角形增加2n个点,
∴2+4+6+…+2n=
,
=420,
整理得,n2+n-420=0,
解得n=20,n=-21(舍去),
∴P420是第20个三角形最后的一个点,在x轴上,
∵1+2+3+…+20=
=210,
∴P420的坐标是(210,0).
故答案为:(
,
);(210,0).
∴∠P1OP2=60°,
1×cos60°=1×
1 |
2 |
1 |
2 |
1×sin60°=1×
| ||
2 |
| ||
2 |
∴点P1的坐标是(
1 |
2 |
| ||
2 |
∵第1个三角形有2个点,
第2个三角形增加4个点,
第3个三角形增加6个点,
…,
依此规律,第n个三角形增加2n个点,
∴2+4+6+…+2n=
(2+2n)•n |
2 |
(2+2n)•n |
2 |
整理得,n2+n-420=0,
解得n=20,n=-21(舍去),
∴P420是第20个三角形最后的一个点,在x轴上,
∵1+2+3+…+20=
(1+20)•20 |
2 |
∴P420的坐标是(210,0).
故答案为:(
1 |
2 |
| ||
2 |
练习册系列答案
相关题目