题目内容

如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:①PA=PB+PC;②
1
PA
=
1
PB
+
1
PC
;③PA•PE=PB•PC.其中,正确结论的个数为(  )
A.3个B.2个C.1个D.0个

延长BP到D,使PD=PC,连接CD,可得∠CPD=∠BAC=60°,
则△PCD为等边三角形,
∵△ABC为正三角形,
∴BC=AC
∵∠PBC=∠CAP,∠CPA=∠CDB,
∴△APC≌△BDC(AAS).
∴PA=DB=PB+PD=PB+PC,故①正确;
由(1)知△PBE△PAC,则
PA
PC
=
PB
PE
PA
PB
=
PC
PE
PA
PB
+
PA
PC
=
PC
PE
+
PB
PE
≠1,
∴②错误;
∵∠CAP=∠EBP,∠BPE=∠CPA
∴△PBE△PAC
PA
PB
=
PC
PE

∴PA•PE=PB•PC,故③正确;
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网