题目内容
【题目】如图1,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连结DE交AC于点F,连结BF.
(1)求证:FB=FD;
(2)如图2,连结CD,点H在线段BE上(不含端点),且BH=CE,连结AH交BF于点N.
①判断AH与BF的位置关系,并证明你的结论;
②连接CN.若AB=2,请直接写出线段CN长度的最小值.
【答案】(1)见解析;(2)①AH⊥BF,见解析;②.
【解析】
(1)证明△FAD≌△FAB(SAS)即可解决问题.
(2)①首先证明四边形ABCD是正方形,再证明∠BAH=∠CBF即可解决问题.
②如图3中,取AB的中点O,连接ON,OC.理由三角形的三边关系解决问题即可.
(1)证明:如图1中,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠ACB=45°,
∵线段AB绕点A逆时针旋转90°得到线段AD,
∴∠BAD=90°,BA=AD,
∴∠FAD=∠FAB=45°,
∵AF=AF,
∴△FAD≌△FAB(SAS),
∴BF=DF.
(2)①解:结论:AH⊥BF.
理由:如图2中,连接CD.
∵∠ABC+∠BAD=180°,
∴AD∥BC,
∵AD=AB=BC,
∴四边形ABCD是平行四边形,
∵∠ABC=90°,
∴四边形ABCD是矩形,
∵AB=BC,
∴四边形ABCD是正方形,
∵BA=CD,∠ABH=∠DCE,BH=CE,
∴△ABH≌△DCE(SAS),
∴∠BAH=∠CDE,
∵∠FCD=∠FCB=45°,CF=CF,CD=CB,
∴△CFD≌△CFB(SAS),
∴∠CDF=∠CBF,
∴∠BAH=∠CBF,
∵∠CBF+∠ABF=90°,
∴∠BAH+∠ABF=90°,
∴∠ANB=90°,
∴AH⊥BF.
②如图3中,取AB的中点O,连接ON,OC.
∵∠ANB=90°,AO=OB,
∴ON=AB=1,
在Rt△OBC中,OC=,
∵CN≥OC-ON,
∴CN≥-1,
∴CN的最小值为-1.
【题目】某班数学兴趣小组经过市场调查,整理出某种商品在第天的售价与销量的相关信息如下表:
观察表格:根据表格解答下列问题:
0 | 1 | 2 | |
1 | |||
-3 | -3 |
(1)__________._____________.___________.
(2)在下图的直角坐标系中画出函数的图象,并根据图象,直接写出当取什么实数时,不等式成立;
(3)该图象与轴两交点从左到右依次分别为、,与轴交点为,求过这三个点的外接圆的半径.