题目内容

【题目】如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE是⊙O的切线,正确的个数是( )

A.1 个
B.2个
C.3 个
D.4个

【答案】D
【解析】解:∵AB是⊙O的直径,
∴∠ADB=90°=∠ADC,
即AD⊥BC,①正确;
连接OD,
∵D为BC中点,
∴BD=DC,
∵OA=OB,
∴DO∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵OD是半径,
∴DE是⊙O的切线,∴④正确;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴②正确;
∵D为BC中点,AD⊥BC,
∴AC=AB,
∵OA=OB= AB,
∴OA= AC,∴③正确.
故答案为:D.
根据直径所对的圆周角是直角可得AD⊥BC;连接OD,根据三角形的中位线定理可得DO∥AC,结合已知条件DE⊥AC可得OD⊥DE,则DE是⊙O的切线;根据DE是⊙O的切线可得∠ODA+∠EDA=90°,而∠ADB=∠ADO+∠ODB=90°可得∠EDA=∠ODB,易得∠EDA=∠B;根据等腰三角形三线合一可得AC=AB,易得OA= AC。所以选项D符合题意。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网