题目内容

如图,已知反比例函数y=
k1
x
的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)在直线AB上是否存在一点P,使△APO△AOB?若存在,求P点坐标;若不存在,请说明理由.
(1)∵双曲线y=
k1
x
过点(-1,-2)
∴k1=-1×(-2)=2
∵双曲线y=
2
x
过点(2,n)
∴n=1
由直线y=k2x+b过点A,B得
2k2+b=1
-k2+b=-2

解得
k2=1
b=-1

∴反比例函数关系式为y=
2
x
,一次函数关系式为y=x-1.

(2)存在符合条件的点P,P(
7
6
1
6
)

理由如下:∵A(2,1),B(-1,-2),
∴OA=
22+12
=
5
,AB=
(-1-2)2+(-2-1)2
=3
2

∵△APO△AOB
AP
AO
=
AO
AB

∴AP=
AO2
AB
=
5
3
2
=
5
2
6

如图,设直线AB与x轴、y轴分别相交于点C、D,过P点作PE⊥x轴于点E,连接OP,作AF⊥x轴,BG⊥x轴,DH⊥BG.
在直线y=x-1中,令x=0,解得:y=-1,则D的坐标是:(0,-1);
在直线y=x-1中,令y=0,解得:x=1,则C的坐标是(1,0);
则CF=OF-OC=2-1=1,AF=1,在直角△ACF中,AC=
AF2+CF2
=
2

OC=OD=1,则CD=
OC2+OD2
=
2

BH=BG-GH=2-1=1,DH=1,在直角△BDH中,BD=
BH2+DH2
=
2

则AC=CD=DB=
2

故PC=AC-AP=
2
-
5
2
6
=
2
6

在直线y=x-1中,令x=0,则y=-1,则D的坐标是(0,-1),OD=1,
令y=0,则x=1,则C的坐标是:(1,0),则OC=1,
则△OCD是等腰直角三角形.
∴∠OCD=45°,
∴∠ACE=∠OCD=45°.
再由∠ACE=45°得CE=PE=
2
6
×
2
2
=
1
6

从而OE=OC+CE=
7
6

点P的坐标为P(
7
6
1
6
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网