题目内容
【题目】阅读下面材料,完成(1)-(3)题
数学课上,老师出示了这样一道题:如图,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,连接DC、BE交于点F,过A作AG⊥DC于点G,探究线段FG、FE、FC之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段BE与线段DC相等.”
小伟:“通过观察发现,∠AFE与α存在某种数量关系.”
老师:“通过构造全等三角形,从而可以探究出线段FG、FE、FC之间的数量关系.”
(1)求证:BE=CD;
(2)求∠AFE的度数(用含α的式子表示);
(3)探究线段FG、FE、FC之间的数量关系,并证明.
【答案】(1)见解析;(2)∠AFE=;(3)EF=FC+2GF,见解析
【解析】
(1)由∠DAB=∠CAE=α,可得∠DAC=∠BAE,根据“SAS”可证△ADC≌△ABE,可得DC=BE;
(2)由△ADC≌△ABE可得∠AEF=∠ACD,即可证点A,点E,点C,点F四点共圆,可得∠AFE=∠ACE,根据等腰三角形的性质和三角形内角和定理可求∠AFE的度数;
(3)结论:EF=FC+2GF.由题意可得∠AFD==∠AFE,过点作AH⊥BE,可证△AGF≌△AHF,可得AG=AH,GF=HF,即可证Rt△AGC≌Rt△AHE,可得GC=HE,由EF﹣FC=2GF可得结论.
证明:(1)∵∠DAB=∠CAE=α,
∴∠DAC=∠BAE,且AD=AB,AC=AE
∴△ADC≌△ABE(SAS)
∴DC=BE.
(2)∵△ADC≌△ABE
∴∠AEF=∠ACD
∴点A,点E,点C,点F四点共圆
∴∠AFE=∠ACE
∵AC=AE,∠DAB=∠CAE=α
∴∠ACE=,
∴∠AFE=.
(3)结论:EF=FC+2GF.
理由:∵△ADC≌△ABE
∴∠ADC=∠ABE
∴点A,点D,点B,点F四点共圆
∴∠AFD=∠ABD
∵AB=AD,∠DAB=∠CAE=α
∴∠ABD=,
∴∠AFD=,
∴∠AFE=∠AFD
如图,过点作AH⊥BE,
∵∠AFE=∠AFD,∠AGF=∠AHF,AF=AF
∴△AGF≌△AHF(AAS)
∴AG=AH,GF=HF,
∵AG=AH,AE=AC
∴Rt△AGC≌Rt△AHE(HL)
∴GC=HE
∵EF﹣FC=HE+FH﹣FC=GC+FH﹣FC=GF+FC+FH﹣FC=2GF,
∴EF=FC+2GF.