题目内容
【题目】探究题
问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
(1)类比解决:
请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
(2)问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,
A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
请你类比上述推导过程,利用图形的几何意义确定:13+23+33= . (要求写出结论并构造图形写出推证过程).
(3)问题拓广:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= . (直接写出结论即可,不必写出解题过程)
【答案】
(1)
解:∵如图,左图的阴影部分的面积是a2﹣b2,
右图的阴影部分的面积是(a+b)(a﹣b),
∴a2﹣b2=(a+b)(a﹣b),
这就验证了平方差公式;
(2)如图,A表示1个1×1的正方形,即1×1×1=13;
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,
因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;
G与H,E与F可以表示3个3×3的正方形,即3×3×3=33;
而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,
由此可得:13+23+33=(1+2+3)2=62;
故答案为:62;
(3)解:[ n(n+1)]2
【解析】(3)由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2 ,
又∵1+2+3+…+n= n(n+1),
∴13+23+33+…+n3=[ n(n+1)]2 .
所以答案是:[ n(n+1)]2 .